Assessment of the Global Monthly Mean Surface Insolation Estimated from Satellite Measurements Using Global Energy Balance Archive Data

1995 ◽  
Vol 8 (2) ◽  
pp. 315-328 ◽  
Author(s):  
Zhanqing Li ◽  
Charles H. Whitlock ◽  
Thomas P. Charlock
1998 ◽  
Vol 11 (8) ◽  
pp. 2042-2061 ◽  
Author(s):  
H. Gilgen ◽  
M. Wild ◽  
A. Ohmura

Abstract Means and trends of shortwave irradiance at the earth’s surface are calculated from pyranometer measurements stored in the Global Energy Balance Archive (GEBA) database. The GEBA database contains the most comprehensive set of shortwave irradiance monthly means. The relative random error of measurement is approximately 5% of a monthly mean in general and approximately 2% of a yearly mean. The shortwave irradiance yearly means are analyzed in a 2.5° × 2.5° grid. In average example grid cells in Europe (no large altitude differences, no coasts), the difference of shortwave irradiance yearly means measured at different stations (station effect) is less than 5% of the cell mean, and the interannual variability is approximately 4% of the cell mean. On most continents, shortwave irradiance decreases significantly in large regions, and significant positive trends are observed only in four small regions.


2021 ◽  
pp. 146808742110342
Author(s):  
Francisco Payri ◽  
Jaime Martín ◽  
Francisco José Arnau ◽  
Sushma Artham

In this work, the Global Energy Balance (GEB) of a 1.6 L compression ignition engine is analyzed during WLTC using a combination of experimental measurements and simulations, by means of a Virtual Engine. The energy split considers all the relevant energy terms at two starting temperatures (20°C and 7°C) and two altitudes (0 and 1000 m). It is shown that reducing ambient temperature from 20°C to −7°C decreases brake efficiency by 1% and increases fuel consumption by 4%, mainly because of the higher friction due to the higher oil viscosity, while the effect of increasing altitude 1000 m decreases brake efficiency by 0.8% and increases fuel consumption by 2.5% in the WLTC mainly due to the change in pumping. In addition, GEB shows that ambient temperature is affecting exhaust enthalpy by 4.5%, heat rejection to coolant by 2%, and heat accumulated in the block by 2.5%, while altitude does not show any remarkable variations other than pumping and break power.


2018 ◽  
Vol 52 (7-8) ◽  
pp. 4787-4812 ◽  
Author(s):  
Martin Wild ◽  
Maria Z. Hakuba ◽  
Doris Folini ◽  
Patricia Dörig-Ott ◽  
Christoph Schär ◽  
...  

2019 ◽  
Vol 53 (7-8) ◽  
pp. 4781-4797 ◽  
Author(s):  
Paulo Ceppi ◽  
Jonathan M. Gregory

Sign in / Sign up

Export Citation Format

Share Document